Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds

نویسندگان

  • Nathaniel Thomas
  • Tess Smidt
  • Steven M. Kearnes
  • Lusann Yang
  • Li Li
  • Kai Kohlhoff
  • Patrick Riley
چکیده

We introduce tensor field networks, which are locally equivariant to 3D rotations and translations (and invariant to permutations of points) at every layer. 3D rotation equivariance removes the need for data augmentation to identify features in arbitrary orientations. Our network uses filters built from spherical harmonics; due to the mathematical consequences of this filter choice, each layer accepts as input (and guarantees as output) scalars, vectors, and higher-order tensors, in the geometric sense of these terms. We demonstrate how tensor field networks learn to model simple physics (Newtonian gravitation and moment of inertia), classify simple 3D shapes (trained on one orientation and tested on shapes in arbitrary orientations), and, given a small organic molecule with an atom removed, replace the correct element at the correct location in space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polar Transformer Networks

Convolutional neural networks (CNNs) are inherently equivariant to translation. Efforts to embed other forms of equivariance have concentrated solely on rotation. We expand the notion of equivariance in CNNs through the Polar Transformer Network (PTN). PTN combines ideas from the Spatial Transformer Network (STN) and canonical coordinate representations. The result is a network invariant to tra...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Evaluating Weld Magnification Factor in Welded Tubular Joints Using Artifitial Neural Networks

In welded tubular joints, when the fatigue crack depth is less than 20% of chord wall thickness, the crack growing process is highly affected by weld geometry. Hence, T-butt solution and weld magnification factor (Mk) are applicable tools for evaluating the crack growth rate in this domain. In this research, the capability of Artificial Neural Network (ANN) for estimating the Mk of weld toe c...

متن کامل

3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method

Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.08219  شماره 

صفحات  -

تاریخ انتشار 2018